Parameter reduction in nonlinear state-space identification of hysteresis

نویسندگان

  • Alireza Fakhrizadeh Esfahani
  • Philippe Dreesen
  • Koen Tiels
  • Jean-Philippe Noël
  • Johan Schoukens
چکیده

Hysteresis is a highly nonlinear phenomenon, showing up in a wide variety of science and engineering problems. The identification of hysteretic systems from input-output data is a challenging task. Recent work on black-box polynomial nonlinear state-space modeling for hysteresis identification has provided promising results, but struggles with a large number of parameters due to the use of multivariate polynomials. This drawback is tackled in the current paper by applying a decoupling approach that results in a more parsimonious representation involving univariate polynomials. This work is carried out numerically on input-output data generated by a Bouc-Wen hysteretic model and follows up on earlier work of the authors. The current article discusses the polynomial decoupling approach and explores the selection of the number of univariate polynomials with the polynomial degree, as well as the connections with neural network modeling. We have found that the presented decoupling approach is able to reduce the number of parameters of the full nonlinear model up to about 50%, while maintaining a comparable output error level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A nonlinear state-space approach to hysteresis identification

Most studies tackling hysteresis identification in the technical literature follow white-box approaches, i.e. they rely on the assumption that measured data obey a specific hysteretic model. Such an assumption may be a hard requirement to handle in real applications, since hysteresis is a highly individualistic nonlinear behaviour. The present paper adopts a black-box approach based on nonlinea...

متن کامل

Hysteresis Identification using Nonlinear State-Space Models

Most studies tackling hysteresis identification in the technical literature follow white-box approaches, i.e. they rely on the assumption that measured data obey a specific hysteretic model. Such an assumption may be a hard requirement to handle in real applications, since hysteresis is a highly individualistic nonlinear behaviour. The present paper adopts a black-box approach based on nonlinea...

متن کامل

Online State Space Model Parameter Estimation in Synchronous Machines

The purpose of this paper is to present a new approach based on the Least Squares Error method for estimating the unknown parameters of the nonlinear 3rd order synchronous generator model. The proposed method uses the mathematical relationships between the machine parameters and on-line input/output measurements to estimate the parameters of the nonlinear state space model. The field voltage is...

متن کامل

Nonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms

Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...

متن کامل

Cross-Gramian Based Combined State and Parameter Reduction

This work introduces the empirical cross-gramian for multiple-input-multiple-output systems. The cross-gramian is a tool for reducing the state space of control systems, by conjoining controllability and observability information into a single matrix and does not require balancing. Its empirical gramian variant extends the applicability of the cross-gramian to nonlinear systems. Furthermore, fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1705.00178  شماره 

صفحات  -

تاریخ انتشار 2017